
Embedding Semantic Product Memories in the Web of Things

Christian Seitz and Christoph Legat
Intelligent Autonomous Systems

Siemens AG, Corporate Technology

Munich, Germany

Email: [ch.seitz | christoph.legat.ext]@siemens.com

Jörg Neidig
Advanced Technology and Standards

Siemens Industry Sector

Nuremberg, Germany

Email: joerg.neidig@siemens.com

Abstract—Today, RFID is used to identify a wide range
of work pieces or individual products for tracking their
movements through the logistics chain. For future purposes
the idea of storing only a single ID must be extended to a
Product Memory. This memory stores data of the complete
product life cycle. This paper introduces an architecture and
an implementation for integrating data in product memories.
Our contribution encompasses software modules for a uniform
sensor access, a sensor data ontology and web interfaces for
product memory applications.

I. INTRODUCTION

This paper introduces web approaches for Semantic Prod-

uct Memories. A Product Memory is part of Intelligent

Products and a next possible step in product identification.

A. From Price Labels to a Product Memory

Some years ago, price labels were attached to products in

supermarkets. But these labels had some major drawbacks.

If the prices of a product had changed a tedious manual re-

labeling process was necessary. Manual activities are both,

expensive and error prone. Additionally, the prices labels

were not machine readable in an easy way. Sophisticated

character recognition methods combined with expensive

camera equipment would have been necessary.

For that reasons the price labels were replaced by bar

codes. A bar code in its simplest form represents data in

the widths (lines) and the spacings of parallel lines. With a

bar code a specific product in a data base is associated. The

benefit is, if the price of a product changes only the price

attribute in the data base needs to be changed and not each

single instance of a product must be updated. Bar codes are

machine readable with e. g. laser scanners.

Bar codes in supermarket identify a specific product, but

have still the disadvantage that single product instances can-

not be addressed. Additionally, it is not possible to change

the data of the bar code without replacing it. Therefore,

in the last few years for expensive products the bar code

technology was replaced by the RFID (Radio Frequency

Identification) technology. RFID tags are readable and (re-

)writable, bulk reading - reading to a set of tags at once -

is also possible. With RFID individual data can be stored

on a product. Currently, RFID tags are e. g. used for asset

management or tracking of goods or animals. Unfortunately,

the storage capacity of RFID tags is limited (currently some

kilo bytes) and the data rate is also low.

Our vision, which we call Semantic Product Memory,

goes even one step further and enhances the product identifi-

cation with RFID. A product is equipped with an additional

memory and optional sensors. This memory stores selected

product interactions during the complete product-life-cycle.

For instance, laptops are already equipped with acceleration

sensors. A product memory could store these data for a

specified time period and could be consulted by service staff

for warranty issues. Additionally, the product memory is

active, i. e. it can communicate with its environment or other

product memories, e. g. with wireless radio technologies like

ZigBee, Near Field Communication, or Bluetooth.

Getting back to the supermarket scenario with a semantic

product memory, it is not necessary to manually change

the price of a certain product or even product instance.

The product determines its price by evaluating its own

condition and by comparing this status with its environment.

A prerequisite to achieve this behavior is a set of strategies

which are part of the initial product memory.

B. A Road map for Product Memories

The vision of Product Memories cannot be realized in

more or less sophisticated forms. The first and easiest

realization is a RFID based product memory, as it already

exists. A product is equipped with a RFID tag that stores

product life cycle relevant data. Alternatively, a link can be

stored on the RFID tag. This link can be a web resource and

could be accessible with a browser.

Since the storage capacity of RFID tags is limited, the

next step is a RFID based system with an additional flash

memory. The content of the RFID Tag is constantly moved

to a large additional memory.

RFID data throughput is low; therefore it is relevant to

replace it with a faster wireless radio technology. But a new

huge problem arises - the power supply. Larger batteries are

necessary or energy harvesting techniques must be applied.

Since product memories must interact with the environ-

ment, standards must be used for information exchange. But

complex communication stacks (e. g. TCP/IP) and abstract

content languages (e. g. XML) need a further increase of the

processing power of the product memory hardware which is

in opposition to a miniaturization, low energy consumption,

and of course the costs.

708978-1-4244-5328-3/10/$26.00 ©2010 IEEE

From software aspects another facet exists. The product

memory can be autonomous; i. e. it interacts with other

product memories and its environment. Thus, intelligent

products [1] can be realized.

Our focus is an autonomous product memory. For a first

prototype we use a wireless sensor node. Although, this

hardware is today very costly, we believe that in about five

year the price will be reduced and it will be affordable to

endow products with an autonomous product memory.

The paper is organized as follows. Section II is about exist-

ing work. After this, the system architecture of our approach

is discussed. This is followed by the presentation of product

memory scenarios. Section V presents our implementation.

The paper finishes with a future outlook.

II. RELATED WORK

There are already some consumer applications which

describe a simple RFID-based form of a product memory.

The authors in [2] present the Digital Sommelier, an inter-

active wine shopping assistant that provides general product

information. Wine bottles sense their state via attached

wireless sensors and detect user interaction over RFID and

acceleration sensors. With such a solution a buyer of a

product can check if the product was aging adequately and

is still in a good condition.

The Smart Shopping Assistant [3] application observes the

users’ interactions with products in a supermarket. On

displays mounted to the trolleys, context-dependent user

support is provided by the display. The user is provided

with detailed product information or a list of recipes that

could be prepared with the selected ingredients. For each

product, information including the product name, a textual

description, and the price is manually entered into a SQL

data base. The information is in turn related to the object

through a globally unique identification number.

In [4] a frozen pizza box is equipped with a simple RFID-

based object memory. The authors report on requirements

regarding technology and memory content, and describe our

memory framework implementation as well as two hardware

demonstrators from the smart home domain.

The creation of product memories is discussed in [5]. The

authors suggest splitting the memory in a short-term and a

long-term memory. The short-term memory contains the raw

data and mechanisms exist to filter and aggregate the data.

This higher level data is then the long-term memory and

stored in a data base. Wahlster et al. [6] describe an extension

of this approach and present the SmartKitchen project. A

semantic cookbook is created by monitoring persons which

are using the kitchen. The recorded information can be

shared locally or globally over the Internet.

The existing approaches are all RFID based or data base

centric and do not implement autonomous product memo-

ries. Therefore, our proposal can be seen as an enhancement

of existing work.

Web Product

Memory

Sensor
1

SensorN

Product

Memory Mote

Gateway Gateway

Actuator
1

ActuatorN

Gateway

WWW

Sensor
2

Registry Service

User

Access

Figure 1. Semantic Product Memory System Architecture

III. SYSTEM ARCHITECTURE

In this section our proposed architecture is described. The

major building blocks are depicted in figure 1. A product

is equipped with a memory mote, i. e. the hardware which

is necessary to realize semantic product memories. This

hardware integrates a (wireless) communication facility in

order to get in touch with the product memory. Since the

product memory acts autonomously and searches actively for

memory content another infrastructure element is necessary

- the Gateway. It can be seen as an abstraction for wrapping

heterogeneous sensing and actuator devices and providing

unified access to sensor measurement, configuration and

control, hiding the details of raw data acquisition and ac-

tuator control from the higher-level components. Therefore,

sensors and actuators can be attached to Gateways, either

for accessing data or to control the environment. Gateways

are connected to other Gateways or to the Internet. Data in

the Internet or data from data bases can be seen as virtual

sensors. Gateways publish information about attached sensor

and actuators at a Registry Service. This service is used by

the product memory when certain information is needed or

action must be executed. Finally, product memory data can

be replicated in the Internet, just because a product memory

is not accessible at any time through its mobile character.

The User Access module allows the detection and access

of surrounded product memories as well as the access of

associated web product memories.

In the next section the architecture of the two most important

components - the Memory Mote and the Gateway - are

described in detail.

A. Memory Mote Architecture

Figure 2 shows the generic architecture of a single prod-

uct memory. It consists of five major components: (i) a

Communication Interface to send and receive information;

(ii) an optional sensor module for accessing sensors on

the product; (iii) a Memory Agent which coordinates the

communication activities; (iv) a Product Memory containing

709

Memory Mote

Product Memory

Rule Engine
Memory
Agent

Communication Module
(802.15.4, Bluetooth, RFID)

Sensor

Module

Figure 2. Generic Product Memory Architecture

all information stored on the memory; (v) and finally a Rule

Engine for evaluating the stored information and inferring

required actions. In the following we discuss each of the

components in more detail.

1) Communication Interface: The Communication Inter-

face is responsible for receiving data (e.g. from manufac-

turing machines) as well as for sending data to outside

components (e.g. in order to adjust a machine or to trigger

an external event). The Communication Interface has to be

adapted to the applications area. We are focusing on the

industry automation domain, where 802.15.4 communica-

tion, Bluetooth or RFID-based communication infrastructure

is already in place. In general, a wide range of different

technologies and protocols can be supported. Sending and

receiving activities are controlled by the Memory Agent.

2) Sensor Module: A product memory can optionally

contain onboard sensors. Products are mobile and therefore

it is possible that no communication with external sensors

is possible. But many applications for product memories

must be constantly provided with sensor data, e. g. with

temperature data. The sensor module consists basically of

device drivers for the sensors.

3) Memory Agent: The Memory Agent is responsible

for forwarding information to the product memory once it

is received by the Communication Interface. Currently, we

assume that the input data is already semantically annotated

in a standardized way - this is done by the Gateway. As a

language with standardized syntax and semantics we rely on

a restricted fragment of the W3C Web Ontology Language

OWL 2 [7], called OWL 2 RL profile. The major difference

of the profile in terms of expressivity compared to OWL

2 DL are a limited set of supported axioms (no disjoint

unions of classes, no reflexive object property axioms, no

negative property assertions) as well as restrictions on the

use of certain constructs (e.g. no existential quantification

on the right side of an axiom allowed). Although not

fully expressive, the fragment has two major advantages

with respect to embedded applications: First, all standard

reasoning tasks (such as checking for ontology consistency,

class expression satisfiability, class expression subsumption,

and instance checking) are tractable, i.e. they can be solved

by a deterministic algorithm in polynomial time which is

absolutely crucial for the real world embedded systems.

Second, OWL 2 RL can be implemented using traditional

rule-based systems and we can thus easily realize a reactive

behavior (i.e. knowledge base updates may directly trigger

new actions). The Memory Agent therefore has to translate

the received data into rules and facts before storing them in

the product memory.

4) Rule Engine: Each time a change in the Product

Memory occurs, the Rule Engine verifies whether the cur-

rent facts fulfill the conditions listed in the body of a

rule (antecedent). This is repeated for all rules until no

rule fires anymore. Note that an obvious limitation of the

current OWL 2 RL translation to a forward chaining rule

language is the possible loss of the declarative model. In

real applications the declarative models could be important

– particularly if different not coordinated sets of rules are

added to the product memory by different parties.

The rule sets must be transferred a priory to the Memory

Mote. The rule set is not static, i. e. it can change during the

product life cycle.

B. Gateway Architecture

The Gateway represents sensors and actuators. The Gate-

way integrates all devices, manages them internally and rep-

resents them to the outside as one logic unit. The Gateway

registers its sensors with the Registry Service (see figure 1).

To enable a unified access to heterogeneous devices, the

Gateway provides methods for accessing raw sensor data,

for configuring individual sensor and actuator devices and

for monitoring their state. The components of the Gateway

can be seen in figure 3.

1) Communication: The Communication subcomponent

is responsible for handling all communication of the Gate-

way with the "outside", i. e. other components of the system

infrastructure. Thus, the Communication component pro-

vides the unified interface for sensor and actuator access

and configuration. It handles multiple, potentially concur-

ring requests and subscriptions and provides the means for

Sensor and Actuator Management

Infrastructure

Meta

Description,

Interpretation

Model,

Configuration

Sensor and

Actuator
Model

Configuration &
Control

Communication

- Request/Response

- Publish/Subscribe

- Configuration

Interpretation

Driver Driver Driver

Actuator Sensor Data Source

- read

- configure
- subscribe

Figure 3. Architecture of the Gateway

710

sending messages to remote components, e. g. notification

messages to registered subscribers or messages to register

sensors at the registry component.

2) Sensor and Actuator Management: The Sensor and

Actuator Manager subcomponent maintains the low-level

concerns of the management of sensors and actuators inside

the Gateway. It manages a device driver for each sensor,

sensor network, or actuator and maps requests from the

higher-level components of the gateway to the physical

devices. The driver abstraction provides interfaces for re-

questing sensor values, registering for sensor value updates,

for the configuration of sensor devices and data access, and

for actuator control. Thus, it represents the link between

the abstractions for data access and configuration on the

one hand and the sensing hardware on the other hand.

The driver abstraction hides all implementation details from

the Gateway developer and provides a convenient way to

integrate heterogeneous devices into the Gateway.

3) Configuration and Control: The Configuration and

Control subcomponent is responsible for interpreting con-

figuration requests of higher level entities (e. g. the product

memory) and for carrying out the configuration of the un-

derlying sensors and actuators accordingly. Additionally, this

component is in charge of controlling actuators, e. g. switch

on/off of machines.

4) Interpretation: The Sensor and Actuator Manager sub-

component provides raw sensor data according to particular

data requests and subscriptions. This raw data may be

delivered directly to the requesting instance or could be

interpreted inside the Gateway to reduce the amount of

data which has to be transmitted via the network. The

interpretation subcomponent is responsible for this task.

Components that access the infrastructure can request raw

sensor data or interpreted sensor data. If interpreted sensor

data is requested, the Interpreter subcomponent is invoked.

It refers to the Sensor Model to access the interpretation

model for the requested sensor value and performs the

interpretation.

5) Sensor and Actuator Model: The communication and

interface heterogeneity of sensors and actuators can be

overcome by abstracting with a middleware-like architecture,

the semantic and schematic heterogeneity of delivered data

can not be solved in this way. The research of information

integration has identified the use of ontologies as appropriate

remedy to integrate different data of different sources and

enables the handling of the latter two heterogeneity problems

by the explication of implicit and hidden knowledge [8]. The

precise and formalized nature of ontological knowledge en-

capsulation enables the generation of additional knowledge

not explicitly given within the knowledge base which can be

used directly by the product memories reducing the effort

of their mostly limited computing resources.

Currently we are focusing on sensor models, the integra-

tion of actuators is planned for the near future. We use

Observation Ontology

Time Ontology

Observation

Property Ontology

Property
FeatureOfInterest

TemporalEntity

(Namespace: obs)

Unit

Ontology
uses

Quantity Ontologies

Feature

Math

Ontology
uses

...

Feature Ontology

...

...

Legend:

Restricting Role

Concept

Ontology

 obs: hasFeatureOfInterest

 obs:

hasSource

 obs: hasObservedProperty

 obs: hasQuality

 obs: hasTime

 obs: hasProperty

Figure 4. Structure of the upper ontology layer

an OWL DL description logic based two-layered sensor

model architecture consisting of a domain-independent up-

per ontology layer and subjacent domain ontology layer to

balance interoperability between different domains and often

highly domain-specific formalization of knowledge. The

upper ontology layer is modularized in a sum of ontologies

of different concerns as shown in figure 4 to enable a flexible

design and reducing the complexity for development and

reasoning. The OWL DL logic is used for the registration

service. Since the product memory is currently only able to

process OWL 2 RL, the non OWL 2 RL expressions must

be filtered, before it the expressions are transferred to the

device, see section III-A3.

The macro-structure of the upper ontology described in

the following is embossed by a simplified but expressive

view on the physical world. Entities like robots, machines

or the product itself are faced to their imputable aspects

like temperature or speed. The observation procedure to

detect this relationship is done by sensors. This circum-

stance can be expressed with the help of the Observation

Ontology which is inspired by [9]. It forms the center of

the upper ontology layer defining the Observation concept

and its relationships. An observation relates an entity called

feature of interest to one of its aspect called property by

the roles hasFeatureOfInterest and hasObservedProperty. A

feature of interest is a feature being the object of interest

of an observation in accordance to standards. The Feature

Ontology encapsulates knowledge about features and en-

ables time dependent and independent reasoning on features

with standard reasoning engines to support the detection

and generation of additional knowledge. A semantically

exhaustive description of properties achieved by a generic

meta-model is the concern of the Property Ontology. It

is expanded by a summary of ontologies for quantifiable

properties (quantities) which are separated by concern of

science into different ontologies in a recursive hierarchical

manner. The strong mathematical grounding of quantities

assisted by the Math Ontology enables their automated

computing and precise distinction e.g. between speed and

velocity. The ontology for physical quantities is the most

important of them to describe low-level sensor information

and is completed by an ontology for units of measurement

711

which enables reasoning on the different dimensions of

units. With a view to the effort of abstracting sensors

by focusing on the information provided by them, some

additional information beside the description of features of

interest and their properties are necessary to represent all

facets of an observation: the quality, the source and the

time. The qualitative information is indispensable if sensors

should be abstracted because e.g. correctness, granularity

or resolution of observed data are highly dependable on

the sensor hardware and has to be presented within the

data. This enables reasoning about inconsistencies and the

detection of faulty sources as well as provides a selection

criterion for data requests. Quality aspects of an observation

are integrated with the help of the hasQuality role linking

to a property because it can be seen as property of an

observation and therefore can be modeled in the same way

as properties of a feature of interest. The annotation of an

observation with a description of the source providing the

respective observation enables on the one hand to detect

faulty sources. On the other hand it offers the possibility to

describe processes used to compute an information e.g. by a

transducer or a smart sensor node to provide the possibility

to reason relationships about information correlations and

enable the detection of possibly damaged sources. Sources

either physical or abstract one are entities within the physical

world and can therefore be modeled in the same way as any

other entity as feature of interest. This is expressed by role

hasSource.

The ontology approach supports extensibility. New concepts

can easily be added and the integration of new domain

ontologies is also possible.

IV. SCENARIOS

This section describes which scenarios can be realized

with the architecture of the previous section and which

we are currently implementing. Our focus is the factory

automation domain. Therefore, we concentrate on adding

sensor data in the product memory to improve quality

management or maintenance assistance for operators.

A. Adding Data to Product Memory

In order to get the product memory filled with relevant

data it must be a priori specified which data will become

part of the memory. The product memory is active; i. e. the

product memory agent makes requests to the environment

for certain data. We use a rule based approach to specify

the content of the product memory:

(Temperature(Product) > 25.0◦) →

add Humidity_value(Environemnt)

This rule simply specifies that the product memory agent has

to provide the memory with an additional humidity value.

With such rules the product memory will be successively

filled. Sensors attached to Gateways provide local sensor

data. But Gateways can be attached to the Internet and also

remote sensor data can be integrated in the product memory.

This idea is inspired by the work of Sensor Web Team [10].

Finally, product memories can also be data sources for other

product memories. When product memories exchange data,

the Internet of Thing becomes reality. Currently, in our

approach this is possible but only by using the Gateway

acting as a data dispatcher.

B. Accessing Data of Product Memories

The customer must be able to read certain values of the

product memory. The User Access module is in charge of

this task. This module can detect product memories in the

environment by sending broadcast messages. Since a product

memory can also contain links to web resources, the access

module needs internet access. Each product memory consists

of a globally unique ID (e. g. a URI). If this ID is known,

also replicated Web product memories can be accessed.

We plan to implement the User Access module on mobile

devices like PDAs or mobile phones. This enables consumer

a ubiquitous access to product memories.

C. Product Memory Controls the Environment

The product memory does not only collect data is also an

opportunity to perform control functionality. In the produc-

tion domain, with a product memory a decentralized produc-

tion control becomes possible. The goal is an autonomous

working station. All data that is needed to assemble the

product is kept on the product in the product memory.

If a product enters the vicinity of a working station the

information is sent from the product memory and the station

accomplishes the necessary tasks. Thus, if a product is

assembled in multiple steps, the necessary data is written

to the product memory when the order is entered into the

order system. The data contains the description of the single

production steps with all its parameters, e. g. the position of

bore holes or welds and the used materials. The product

memory can even contain program code for the producing

machines. This use case of course needs a completely new

infrastructure for shop floor systems. One approach is the

architecture in section 1.

V. IMPLEMENTATION

This section describes briefly the implementation of our

first prototype of a semantic product memory. Although the

product memory is supposed to be used during the complete

product-life-cycle, we started to create product memories in

the product production step at first.

A. Memory Mote

The hardware basis of the prototype is a Crossbow

Imote2 module, see figure 2, on the right-hand side. The

Imote2.NET is an advanced wireless sensor node platform.

It is endowed with 32MB memory, which is sufficient for a

first version of a semantic product memory.

The programming environment for the Imote2 is the .NET

Micro Framework. A rule engine is needed for the Memory

Mote and since there is no suitable engine available for the

.NET Micro Framework in managed code, we decided to

712

integrate the rule engine CLIPS [11] natively. CLIPS is a

production rule engine written in the programming language

C based on the rete algorithm. Today, it is one of the most

widely used expert system tools because it is fast, efficient

and free to use.

In order to improve the machine interaction with the Imote2,

it was upgraded with an additional RFID module. It provides

a low power, high performance, multi-protocol 13.56 MHz

module. The Imote2 in combination with the RFID module

is called in the following siTag (smart industrial tag).

This siTag contains the software modules which are intro-

duced in the architecture section III-A and is supposed to be

attached to valuable products. However, the product memory

must be configured with rules and initial facts. Since many

participants interact with the product memory during the

product life cycle it is not possible to store all relevant rules

initially. Some participants are not willing to hand their rules

to other partners. Not to mention, an increasing amount of

rules influences the execution time as well as the memory

consumption in a negative way. In order to add new rules

or facts, the rules must be sent to the memory mote using

802.15.4, RFID, or Bluetooth. The Memory Agent on the

siTag checks if new rules are available and shifts them to

the rule engine.

The rules define which data are to be integrated in the prod-

uct memory. For example, the rule in section IV-A is trans-

ferred to the Memory Agent that provides the corresponding

sensor data. This sensor data is semantically annotated,

using OWL 2 RL and is received by the communication

module. OWL 2 RL provides a standardized way (W3C) for

information exchange, which is necessary for a cross domain

application. The data is transformed by the memory agent

in the rule language and entered in the product memory. If

the new data is entered the rule engine checks if other rules

can be fired and the cycle starts anew.

B. Gateway

We implemented the Gateway architecture of section III-B

in Java which is installed on industrial PCs. To the Gateways

various sensors are attached, e. g. light barrier, distance sen-

sors, gas sensors, and acceleration sensors. For these sensors,

device drivers must exist in the Gateway. We implemented

simple drivers, e. g. for the serial interface, but also complex

access systems, e. g. OPC (OLE for Process Control).

Since these sensors all return raw sensor values (analog

current values 4-20 mA, or digital values from 0-4095)

the corresponding interpreters are implemented. The output

parameters of the sensors are part of the sensor model and

are used by the interpretation component For example, a

distance sensor returns distance values from 0.2m - 6m.

The current interval 4-20mA is linearly mapped to the

distance interval. If a similar distance sensor with another

interval is used, only the sensor model must be changed.

The interpreter transforms these raw values into a sensor

typical unit value, e. g. meter or degree Celsius. Additionally,

the data is semantically annotated. Currently, unit, quality

and location information is added by using the ontology

presented in section III-B5. This sensor model is registered

with the registry service, which allows the definition of

abstract queries of the memory mote for sensor data. For

example the memory mote can request the air temperature

in degree Celsius in room 12 with a precision of ±0.1 °C.

The registry service returns the ID of gateway(s) that is/are

able to answer the request.

We implemented a subscription service within the commu-

nication component. With this, a memory mote is able to get

sensor data in regular time intervals. The sensor information

is sent from the gateway to the memory mote by using

802.15.4 or Bluetooth radio technology.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented concepts for generating and

accessing product memories. A product memory provides a

digital diary of the complete product life cycle.

We described an architecture for autonomous product mem-

ories, i. e. the product memory determines itself which data

become part of the memory. Local environmental sensor

data can be integrated as well as data from the Internet or

other product memories. We implemented a first version of

a product memory, using a wireless sensor node. We use the

OWL DL standard to model sensor data.

For the future we will finalize the communication modules

and a web service based infrastructure using DPWS is

planned. Additionally, we will integrate actuators in our im-

plementation in order to realize a product driven automation

process.

Acknowledgments: This research was funded in part by the Ger-
man Federal Ministry of Education and Research under grant number
01 IA 08002 G. The responsibility for this publication lies with the authors.

REFERENCES

[1] G. G. Meyer, K. Främling, and J. Holmström, “Intelligent products: A
survey,” Comput. Ind., vol. 60, no. 3.

[2] M. Schmitz, J. Baus, and R. Dörr, “The digital sommelier: Interacting
with intelligent products,” in Internet of Things, 2008.

[3] M. Schneider, “Towards a general object memory,” in UbiComp
Workshop Proceedings, Innsbruck, Austria, 2007.

[4] A. K. Michael Schneider, “The smart pizza packing: An application of
object memories,” in Proceedings of the 4th International Conference
on Intelligent Environnments, 2008.

[5] A. Kröner et al., “SPECTER: Building, exploiting, and sharing aug-
mented memories,” in Workshop on Knowledge Sharing for Everyday
Life, 2006.

[6] W. Wahlster et al., “Sharing memories of smart products and their
consumers in instrumented environments,” it - Information Technology,
vol. 50, no. 1, 2008.

[7] B. Motik, P. F. Patel-Schneider, and B. Parsia, “Owl 2 web ontology
language: Structural specification and functional-style syntax,” http:
//www.w3.org/TR/2009/PR-owl2-syntax-20090922/, 2009.

[8] H. Wache et al., “Ontology-based integration of information – a survey
of existing approaches,” in IJCAI-01 Workshop on Ontologies and
Information Sharing, Seattle, USA, 2001.

[9] S. Cox, “Observations and measurements – part 1 – observation
schema,” 2007.

[10] M. Botts et al., “OGC®sensor web enablement: Overview and high
level architecture,” GeoSensor Networks: Second International Con-
ference, 2006.

[11] G. Riley, “Clips: An expert system building tool,” in In Proceedings
of the Technology 2001 Conference, 1991.

713

