
Towards Building a Global Oracle: a Physical Mashup

Using Artificial Intelligence Technology

Carolina Fortuna, Matevz Vucnik
Department of Communication Systems,

Jozef Stefan Institute
Jamova 39, Ljubljana, Slovenia

+ 386 1 477 3528

carolina.fortuna@ijs.si, matevz.vucnik@ijs.si

Blaz Fortuna, Klemen Kenda,

Alexandra Moraru, Dunja Mladenic
Artificial Intelligence Laboratory,

Jozef Stefan Institute
Jamova 39, Ljubljana, Slovenia

+ 386 1 477 3528

blaz.fortuna@ijs.si, klemen.kenda@ijs.si,
alexandra.moraru@ijs.si, dunja.mladenic@ijs.si

ABSTRACT
In this paper, we describe Videk - a physical mashup which uses

artificial intelligence technology. We make an analogy between

human senses and sensors; and between human brain and artificial

intelligence technology respectively. This analogy leads to the

concept of Global Oracle. We introduce a mashup system which

automatically collects data from sensors. The data is processed

and stored by SenseStream while the meta-data is fed into

ResearchCyc. SenseStream indexes aggregates, performs

clustering and learns rules which then it exports as RuleML.

ResearchCyc performs logical inference on the meta-data and

transliterates logical sentences. The GUI mashes up sensor data

with SenseStream output, ResearchCyc output and other external

data sources: GoogleMaps, Geonames, Wikipedia and Panoramio.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis

and Indexing – abstracting methods, indexing methods. I.2.0.

[Artificial Intelligence]: General. D.2.11 [Software

Engineering]: Software Architecture – data abstraction, domain-

specific architectures.

General Terms
Algorithms, Performance, Design, Experimentation, Languages.

Keywords
Mashup, artificial intelligence, things, sensors, data mining,

machine learning, web services.

1. INTRODUCTION
Humans are born with five senses: sight, hearing, smell, taste and

touch. While we grow and develop, we use these senses to

observe the surroundings, learn patterns, we learn concepts and

associate these concepts with shapes and patterns. Then we are

able to generalize, recognize unseen patterns and infer new ones.

Now, with the ever increased number of sensors being deployed

world-wide, we are developing a global sensing system. A natural

next step would be to find a way to connect this system with

existing technology such as data mining, machine learning and

semantic technologies to develop powerful systems that can help

us understand the world – a kind of Global Oracle. The web

infrastructure is the ideal means to connect these two worlds: the

sensors and the artificial intelligence.

In this paper, we describe Videk [1] - a mashup which makes a

small step towards the Global Oracle. The sensor meta-data and

measurements are collected and fed into mining, learning and

reasoning systems. The output of these systems, the sensor data

and external data sources are then mashed into a GUI, but also

APIs for external users are provided. The key artificial

intelligence technologies powering the system are SenseStream, a

storing and processing engine, and ResearchCyc [2], a knowledge

base and inference engine derived from the Cyc project.

The contributions of this paper are as follows. We show how the

WoT and artificial intelligence technology can be used to create

knowledge: having ubiquitous senses spread through the world

and based on their input perform learning and reasoning and

present the outcome in a useful manner. As such, we introduce

and describe SenseStream a stream mining and event detection

engine which operated on sensor data. We also use ResearchCyc

for modeling the sensor meta-data, reasoning and transliteration of

logical statements.

The paper is organized as follows. Section 2 describes the

architecture of the Videk mashup system. Section 3 describes the

implementation of the internal components of Videk while

Section 4 describes the external sources. Related work is

described in Section 5 while Section 6 summarizes the paper.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

WoT 2012, June 2012, Newcastle, UK.

Copyright 2012 ACM 978-1-4503-0624-9/11/06…$10.00.

2. SYSTEM ARCHITECTURE
The architecture of Videk is depicted in Figure 1 and consists of

four main components: the sensor data, the external sources, the

mashup server and the users.

By sensor data we refer to sensor meta-data or context and to

sensor measurements. Sensor data is central to the system, as it is

relied upon to connect (mashup) with external sources. It can

accept sensor data from any source as long as it complies with a

specified format. Alternatively, a new adapter for additional

sensor data is straightforward to add due to the modular design of

the system.

By external sources we refer to any data and/or knowledge source

available as a web service. Straightforward examples of these are

the Geonames and Wikipedia services which can be queried for

information and the response can be parsed and used for the

mashup.

The Mashup Server acts as an enabling platform by interfacing

with sensor and external data sources as well as with the users. It

mashes up raw and processed sensor data with external sources of

data and provides a GUI for human end users and an API for

external mashups. At the core of the system is the Storing and

Processing Engine which transforms the sensor data into useful

information and knowledge. The engine stores, indexes and

aggregates new sensor measurement data. For instance, it

computes statistics such as average, maximum, minimum and it

can extract rules and export them as RuleML [3].

By external users we refer to humans and machines. For the

human users, a GUI using the mashed up data and knowledge is

available. For the machines, the exposed API allows the system to

be plugged into other mashups therefore making it another piece

in the ecosystem.

Figure 1 System Architecture

The architecture of Videk is designed in a way that allows organic

growth by adding new external sources of data (sensor and

external) and updating the user interface to support new sources.

The Storage and Processing Engine supports addition of plug-ins

to add functionality to the data processing pipeline.

The system is built so that the need for human involvement with

respect to data or meta-data provisioning from sensors is reduced

to minimum. It achieves this by accommodating automatic

collection of sensor meta-data using our custom Device

Identification Protocol (DIP). Based on the collected data it

performs processing and pulls relevant information from external

data sources. The meta-data contains information such as unique

ID of the sensor node, GPS coordinates, configuration (i.e. what

type of sensors the node features), unit of measurement for each

measurement stream, sampling frequency and accuracy.

All the external services and data sources are interrogated and

mashed up starting from the information acquired from the

sensors in the form of meta-data. For instance, based on GPS

coordinates, the system queries the Geonames service to retrieve

the name of the geographical place where the sensor is located, or

based on the sensor type (e.g. air pressure), details on how such

sensor work or what are expected values can be pulled from

Wikipedia.

3. SYSTEM IMPLEMENTATION
Videk is modular therefore it can constantly evolve by adding

features and external sources. The current implementation (see

Figure 2) uses sensor data collected from VSN/VESNA [5] sensor

deployments across Slovenia and Google maps, Geonames,

Wikipedia, Panoramio and ResearchCyc as external sources. The

Storage and Processing Engine is called SenseStream while the

Mashup Server is Apache with some custom Java code, PHP

scripts. The GUI uses jQuery for data manipulation, event

handling and Ajax interactions.

Figure 2 Implementation of the system

3.1 Sensor Data Acquisition
The system is designed to be flexible and accept a variety of data

sources. Currently, it uses automatically collected sensor data

from VSN/VESNA sensor deployments. The meta-data is

automatically collected only once from each sensor node that is

joining the network using a custom protocol called Device

Identification Protocol. DIP is an application layer protocol which

consists of three separate parts. The first part is node discovery,

the second is the data collection and the third is the node

identification. When a node is discovered, but not identified, the

server sends request for identification of that node. A node is

discovered once it joins the network of a coordinating node and

starts sending measurements to that coordinator. The coordinator

then forwards the measurements to the server. If no corresponding

metadata is available on the server side, then the server asks for

identification. At this point the node will send the meta-data

describing itself. The sequence diagram of DIP is depicted in

Figure 3.

Currently the meta-data can be collected using a proprietary

format or a JSON-LD format. The measurements are sent by the

sensor cluster coordinators to the server using HTTP. In the past,

the meta-data was inserted by hand. For small deployments, the

manual involvement is acceptable while for large deployments the

automated way is preferable hence we developed and

implemented DIP. For the time being we prefer DIP over the

existing Devices Profile for Web Services (DPWS) [4] which

introduces SOA architecture directly on the resource-constrained

devices such as sensor nodes. As such, DPWS enables the direct

integration of things in the Web service ecosystem by also

enabling dynamic discovery. It uses Web Service Definition

Language (WSDL) and SOAP/XML messages over

HTTP/TCP/IP protocol for meta-data representation while the

discovery of web services (WS-Discovery) is done by SOAP over

UDP/IP broadcast to minimize the network traffic overhead.

DPWS is a relatively mature protocol also from the security point

of view. It provides device authentication and message exchange

through TLS session.

DIP simplifies this communication by using messages which fit in

single link layer IEEE 802.15.4 frame. The payload of a physical

frame is 127 bytes saving additional space for higher layer

protocol headers. In wireless sensor networks, the radio

communication is the most power consuming and the aim was to

keep it at minimum assuming the sensor nodes run on batteries.

As a tradeoff, DIP does not permit direct integration in the Web

service ecosystem. Also, DIP does not provide any security.

For the implementation of DIP we used VSN/VESNA sensor

node platform with Contiki1 operating system. Contiki

incorporates a communication stack called RIME which offers

features like addressing, broadcast, reliable unicast and reliable

bulk unicast for transferring large amounts of data etc. All the

mentioned features are needed for the implementation of DIP

protocol.

Coordinator Node_1 Node_2Infrastructure

Discovery

Measurements

collection

Identification

U

B

B

B

U

U

S

S

S

U

U

S

S

U

S U

US

U

US

S U

US

“Hi”

“Hi”

“Hi”

“Measurements?”

“Measurements”

“Measurements?”

“Measurements”

“Measurements”

“Identification not needed”

“Identification not needed”

“Measurements?”

“Measurements?”

“Measurements”

“Measurements”“Measurements”

“Identification needed”

“Identification needed”

“Metadata?”

“Metadata”“Metadata”

“Metadata?”

“Metadata”“Metadata”

“Measurements”

B U S- Broadcast - Unicast - Implementation dependent

B “Hi”

Figure 3 DIP sequence diagram

3.2 SenseStream
SenseStream is a stream mining and event detection engine which

powers Videk. SenseStream is built using an internal C++ data

mining library and its architecture is depicted in Figure 4. The

central part of the system consists of two components: Data Layer

and Mining Algorithms [6]. At the bottom of the architecture

diagram is a set of data sources, for example sensor

1 http://www.contiki-os.org/

measurements, sensor meta-data, text documents, images. Each

data source requires an adapter, which maps the data source to a

common interface. Adapters for several standard data sources are

provided: a directory of text documents or images, a website,

unique users accessing the website, etc.

Figure 4 SenseStream architecture

The Data Layer provides unified access to all the data sources

from the higher architectural layers, and includes integrated

inverted index and multi-modal feature extractors. Integrated

inverted index is used to provide faceted search functionality over

the records from the data sources. Integrated multi-modal feature

extractors provide functionality for extracting feature vectors from

raw data provided by the various data sources. Examples of

feature extractor would be the vector-space model for text data,

visual words for images, or time series statistics for sensor

measurements. Feature extractors provide an abstraction layer

required by machine learning algorithms.

The measurement feed is processed in real-time. On arrival, each

measurement is put in a FIFO queue, and used to update the

running aggregate for various time windows. The size of time

windows is provided as input parameters. On specified intervals

(e.g. minute, hour, day, week), aggregates are stored in a

designated store, and indexed using its value, time, period and

sensor. The SenseStream API offers browsing, querying and

mining of all stored measurements and its aggregates. The results

can be exported using Linked Data2 standards (RDF, RuleML).

The current implementation of SenseStream uses sensor meta-data

and measurements as data sources. On the Data Layer, the

implementation the following stores: FIFO queue for

measurements (measurement store), aggregates and events (event

store), and meta-data (sensor, sensor node and sensor type stores).

The current store model is an upgrade of the schema described in

[7].

For mining we currently use k-means and hierarchical clustering,

association rule mining and basic event detection. SenseStream

can export the rules discovered using these data mining

algorithms in RuleML format. The RuleML Datalog format

provides a simple and clean syntax for expressing “if-then” rules.

Each condition is represented by one or more atomic formulas

(“Atom”). For example the condition that raindrop exceeds 250

mm per day is represented in Figure 5. The export in the RuleML

format is depended on the vocabulary used for the relation

constants (“Rel”). Specialized domain ontologies can simplify the

RuleML representation as they can have more specific relations

and concepts.

2 http://linkeddata.org/

http://www.contiki-os.org/
http://linkeddata.org/

Figure 5 RuleML sample from a rule

3.3 The Videk Mashup Server
The Videk mashup server acts as a glue between different

components and services used. It interfaces with sensors receiving

data from these, parses and multiplexes the data to the back-up

database, to SenseStream, to ResearchCyc, and to the triple store.

Then it exposes the API to be used by external applications and a

GUI with widgets which mashes up the data and resulting

knowledge described above.

3.4 The Videk API and the GUI
The currently exposed API3 allows retrieving sensor meta-data

such as list of sensors on a node as well as last measurement from

all devices. An example of corresponding calls is:

 http://hostname/xml/current-state

 http://hostname/xml/sensors-on-node/nodeid

The XML response for the sensors on a given node contains the

following information:

 Node

o id (int) - sensor type id

o n (int) - number of sensors

 sensor

 id (int) - sensor id

 type (int) - sensor type id

For data manipulation, event handling and Ajax interactions

jQuery4 library is used. The GUI receives data through the API

layer, which is based on a PHP/MySQL custom made content

management system (CMS).

3 http://sensors.ijs.si/sl/api/index.html

4 http://jquery.com

Figure 6 The Videk mashup GUI5.

4. EXTERNAL MASHED-UP SOURCES

4.1 ResearchCyc
ResearchCyc6 is the research release of Cyc, an artificial

intelligence system which is comprised of a knowledge base and a

reasoning engine. The idea behind it is to encode knowledge in a

structured way and reason about it similar to the way the human

mind does it. For instance, each of us learns the concept of a tree,

branch, leaf and fruit. Then, we learn relationships between these

concepts: that a tree has branches, on a branch grow leaves and

fruit. Finally, we are able to recognize instances of these: this

apple tree, this apple, this apple leaf. This knowledge builds up in

our brains over years and makes it possible to understand,

communicate and reason.

In the process of building up such knowledge we use our senses:

sight, hearing, smell, taste and touch. Similarly, the purpose of

using this technology in the mashup is to allow sensors – the

equivalent of senses – to populate the knowledge base – the

equivalent of part of our brain – with new knowledge. Finally, as

we communicate verbally or using a written form, the Cyc system

implements transliteration technology allowing us to generate

natural language sentences based on inserted and derived – via

logical mechanisms – knowledge.

In the current implementation only sensor meta-data is sent to

ResearchCyc. The concepts already exist in the knowledge base

and the meta-data represents instances of these concepts. An

instance (i.e. individual in Cyc terminology as can be seen in

Figure 7 and Figure 8) corresponding to each sensor node and

sensor is created. Then the relationships between them together

with other data are inserted in the knowledge base. For instance,

VicNode1 in Figure 7 is an electronic device which has six

instances of sensors connected to it or on-board, for example

scp1000VicNode1 and virtualsensor1VicNode1. The

TSL2561VicNode1 sensor is an instance of the TSL2561 sensor

type and is connected to VicNode1 as stated in Figure 8.

5 http://sensors.ijs.si/

6 http://research.cyc.com/

<And> <Atom>

 <op> <Rel iri="cyc:sensorObservation"/> </op>

 <Var> sensor </Var>

 <Ind iri="cyc:Raindrop"/> </Atom>

<Atom>

 <op> <Rel iri="cyc:doneBy"/> </op>

 <Var> sensor </Var>

 <Var> measurement </Var> </Atom>

<Atom>

 <op> <Rel iri="cyc:measurementResult"/> </op>

 <Var> measurement </Var>

 <Var> val1 </Var> </Atom>

<Atom>

 <op> <Rel iri="cyc:duration"/> </op>

 <Var> measurement </Var>

 <Ind type="xs:time">24:00:00</Ind> </Atom>

<Atom>

 <op> <Rel iri="cyc:greaterThan"/> </op>

 <Var> val1 </Var>

 <Ind type="xs:float">250</Ind> </Atom> </And>

http://hostname/xml/current-state
http://hostname/xml/sensors-on-node/nodeid
http://sensors.ijs.si/sl/api/index.html
http://jquery.com/
http://sensors.ijs.si/
http://research.cyc.com/

Figure 7 Knowledge about a sensor node

Figure 8 Knowledge about a sensor attach to a sensor node.

The sensor knowledge is structured in Research Cyc’s knowledge

base in the form of logical sentences on which inference can be

performed. For instance, we only state in the knowledge base that

VicNode1 is an ElectronicDevice and the reasoning engine then

infers that it’s also a Computer. All this knowledge (i.e. asserted

and inferred statements) can then be transliterated to natural

language as shown for VicNode1 in Figure 9. The ResearchCyc

widget in the Mashup GUI displays these statements.

Figure 9 Natural language transliteration of a logical

statement.

4.2 External Web Services
The mashup uses external data sources which are available as

RESTful web services. Based on the sensor nodes’ GPS

coordinates, Google maps are used as the GUI’s background and

the right focus on the deployment locations is presented. Then,

also based on the GPS coordinates, the Geonames service is used

to retrieve the name of the place where the sensors are deployed.

For the deployment on which we zoomed in Figure 6, the name of

the neighborhood Vic is displayed together with relevant

information from Wikipedia. Finally, the Panoramio service is

invoked to retrieve and render pictures of the surrounding area.

5. RELATED WORK
The most relevant body of related work comes from the author of

[8] who introduces a four layered architecture for the web of

things and illustrates the implementation on three case studies.

The architecture is abstracted in four layers which are designed to

facilitate mashing up things: accessibility, findability, sharing and

composition. The case studies are a simple, generic sensing

application, an energy control and monitoring application for

smart houses and an Auto-ID application for supply chain

management.

The SensorMap [9] portal and tools allow users to make queries

over live data sources and provides mechanisms to archive and

index data, process queries, and aggregate and present results on

geocentric Web interfaces. The SensorMap architecture has three

components: the GeoDB storing sensor metadata, the DataHub

handles real time data publishing and the Aggregator which

creates icons representing sensor which the users can then mash

up with maps.

In [10], Deusto Sentient Graffiti (DSG) context aware mobile

mashup for the ubiquitous web is introduced. In DSG, the mobile

clients send meta-data and context data for the server. When the

mobile client sends a query, then this data is used to return a

context aware mashup. The system also uses an inference engine

which operates on a knowledge base populated with meta-data.

According to a set of rules uses the knowledge to annotate

associated to surrounding resources available under their current

contextual conditions. Another context based mobile mashup is

introduced in [11]. The mobile phone acts as a gateway that

collects raw sensor data, preprocesses them and extracts user-

centric contexts. The context management platform stores all

contexts according to the redefined context ontology, detects the

inconsistent information, deduces the high level knowledge using

heuristic rules and provides web service application programming

interfaces (APIs) to mashup server.

SensorMasher [12] publishes sensor data as Web data sources

which can then easily be integrated with other (linked) data

sources and sensor data. Raw sensor readings and sensors can be

semantically described and an- notated by the user. These

descriptions can then be exploited in mashups and in linked open

data scenarios and enable the discovery and integration of sensors

and sensor data at large scale.

Our work uses some elements present in the above mentioned

systems such as creating a WoT mashup, data indexing and

aggregation and overlay on maps, knowledge base and logical

inference on meta-data and export of rules and connection to

Linked Data. However the work is different from all the above as

follows. Our aim is to illustrate how sensors paired with artificial

intelligence technology can create a powerful knowledge tool

such as a Global Oracle rather than defining a generic architecture

for the WoT or for mashups. Our main goal is to illustrate how the

WoT technology can be used to create knowledge: having

ubiquitous senses spread through the world and based on their

input perform learning and reasoning and present the outcome in a

useful manner. Finally, we designed SenseStream to become

another component in the mashup ecosystem and the overall

system to be modular and extensible and impose no limit on the

mashed up external sources.

6. SUMMARY AND FURTHER WORK
In this paper, we described Videk - a physical mashup which uses

artificial intelligence technology. We made an analogy between

human senses and sensors; and between human brain and artificial

intelligence technology respectively. This analogy leads to the

concept of Global Oracle. We introduced a mashup system which

automatically collects data from sensors. The data is processed

and stored by SenseStream while the meta-data is fed into

ResearchCyc. SenseStream indexes aggregates, performs

clustering and learns rules which then it exports as RuleML.

ResearchCyc performs logical inference on the meta-data and

transliterates logical sentences. The GUI mashes up sensor data

with SenseStream output, ResearchCyc output and other external

data sources: GoogleMaps, Geonames, Wikipedia and Panoramio.

As future work we plan to extend SenseStream and couple it with

ResearchCyc. With respect to StreamSense, we plan to add

additional mining and learning algorithms which makes sense of

the input sensor data. Also, we plan to implement detection of

events that comply with the learned rules that are currently

exported as RuleML. The learned rules, together with richer meta-

data automatically collected from upcoming sensor deployments

will be also be inserted into ResearchCyc for reasoning and

transliteration. All these developments will reflect on the GUI and

API in time.

7. ACKNOWLEDGEMENTS
The authors would like to thank Luka Bradesko and Janez Starc

for assisting with ResearchCyc and all colleagues from SensorLab

for supporting this work. This work was in part supported by the

Slovenian Research Agency (ARRS) and the ICT Programme of

the EC under ENVISION (ICT-2009-249120) and PlanetData

(ICT-NoE-257641) and the competence center OPCOMM.

8. REFERENCES
[1] Kenda, K., Fortuna, C., Fortuna, B., & Grobelnik, M. Videk:

A Mash-up For Enviromental Intelligence. In Proceedings of

the 8th Extended Semantic Web Conference (ESWC 2011)

(Heraklion, Greece, May 2011).

[2] Lefkowitz, L.; Curtis, J., Witbrock, M., 2007. Accessible

Research Cyc, Final technical rept. Dec 2003-May 2007.

[3] Boley, H., Tabet, S., Wagner, G. 2001. Design Rationale of

RuleML: A Markup Language for Semantic Web Rules. In

proceedings of the first Semantic Web Working Symposium

(Stanford University, California, USA, July 30 - August 1,

2001). SWWS’01.

[4] Jammes, F.; Mensch, A.; Smit, H.; Service-Oriented Device

Communications Using the Devices Profile for Web services,

Advanced Information Networking and Applications

Workshops, 2007, AINAW '07. 21st International

Conference on , vol.1, no., pp.947-955, 21-23 May 2007

[5] Smolnikar, M., Platise, U. 2010. Versatile Sensor Node - A

Platform for the Sensor as a Service Concept. In Proceedings

of Prosense WSN and SME workshop: Wireless sensor

networks (WSN) and small medium enterprises (SME)

(Ljubljana, Slovenia, May 20, 2010).

[6] Fortuna, Blaž. Semi-automatic ontology construction:

doctoral dissertation = Polavtomatska gradnja ontologij:

doktorska disertacija. (Ljubljana, Slovenia, October 2011).

[7] Moraru, A., Vučnik, M., Porcius, M., Fortuna, C., Mohorčič,

M., Mladenić, D. 2011. Exposing Real World Information

for the Web of Things. In Proceedings of Eight International

Workshop on Information Integration on the Web in

conjunction with WWW’11 (Hyderabad, India, March 28,

2011). IIWeb2011.

DOI=http://doi.acm.org/10.1145/1982624.1982630.

[8] Guinard, D. 2011. A Web of Things Application

Architecture – Integrating the Real-World into the Web. PhD

thesis No. 19891, ETH Zurich, Zurich, Switzerland

[9] Nath, S., Liu, J., Zhao, F. 2007. SensorMap for Wide-Area

Sensor Webs, IEEE Computer, Vol. 40, Issue 7. July 2007.

DOI=http://doi.acm.org/10.1109/MC.2007.250

[10] López-de-Ipiña, D, Vazquez, I., Abaitua, J. 2007. A Context-

Aware Mobile Mashup for Ubiquitous Web. In Proceedings

of IET International Conference on Intelligent Environments

(University of Ulm, Ulm, Germany, Sept. 24-25, 2007).

IE2007.

[11] Li, Y., Fang, J., Xiong, J. 2008. A Context-Aware Services

Mashup System. In Proceedings of 7th International

Conference on Grid and Cooperative Computing (Shenzen,

China, Oct. 24-26, 2008). GCC’08. DOI=

http://dx.doi.org/10.1109/GCC.2008.62.

[12] Le-Phuoc, D., Hauswirth, M. 2009. Linked open data in

sensor data mashups. In Proceedings of the 2nd International

Workshop on Semantic Sensor Networks (Washington DC,

USA, Oct. 25-29, 2009). SSN’09.

